
Delphi advanced programming technologyDelphi advanced programming technology

Chapter 3
THE DELPHI OBJECT ORIENTEDTHE DELPHI OBJECT-ORIENTED

PROGRAMMING

Professor Zhaoyun Suny

3.1 Overview

Classes and objects

The following topics are covered in this chapter:

Classes and objects
 Encapsulation: private and public
 Using properties Using properties
 Constructors
 Obj d Objects and memory
 Inheritance
 Virtual methods and polymorphism
Working with exceptions

Department of Electric Information Engineering

3.2 Core Language Feature

 The Delphi language is an OOP extension of

th l i P l l

 The syntax of the Pascal language is known to

the classic Pascal language.

be quite verbose and more readable than the C

l
 Its OOP Extension follows the same approach,

language.

delivering the same power of the recent breed of

OOP language, from Java to C#.

Department of Electric Information Engineering

3.3 Classes and Objects

 Delphi is based on OOP concepts, and in

class types.

 The use of OOP is partially enforced by the

visual development environment, because

for every new form defined at design timefor every new form defined at design time,

Delphi automatically defines a new class.

Department of Electric Information Engineering

3.3 Classes and Objects

var
 In Delphi a class-type variable

doesn't provide the storage for
Obj1, Obj2: TMyClass;
begin

doesn t provide the storage for

the object, but is only a pointer

or reference to the object in memory // assign a newly created
//object
Obj1 := TMyClass Create;

 Before you use the object,

or reference to the object in memory.

Obj1 := TMyClass.Create;
// assign to an existing
//object

you must allocate memory

for it by creating a new j
Obj2 := ExistingObject;instance or by assigning an

existing instance to the variable:

Department of Electric Information Engineering

3.3 Classes and Objects

 A method is defined with the function or

procedure keyword, depending on whether it

has a return value.

Department of Electric Information Engineering

3.3 Classes and Objects

 Inside the class definition, methods can only

be declared; they must be then defined in the

i l t ti ti f th it

 In this case you prefix each method name with

implementation portion of the same unit.

 In this case, you prefix each method name with

the name of the class it belongs to, using dot

notation:

Department of Electric Information Engineering

3.3 Classes and Objects

procedure TDate.SetValue (m, d, y: Integer);procedure TDate.SetValue (m, d, y: Integer);
begin
Month := m; Day := d; Year := y;
end;
function TDate.LeapYear: Boolean;
beginbegin
// call IsLeapYear in SysUtils.pas
Result := IsLeapYear (Year);esu : s eap ea (ea);
end;

Department of Electric Information Engineering

3.3 Classes and Objects
 This is how you can use an object of the

previously defined class:
var

ADay: TDate;
begin

// create an object
ADay := TDate.Create;
try
// use the object// use the object
ADay.SetValue (1, 1, 2000);
if ADay.LeapYear then

ShowMessage ('Leap year: ' + IntToStr (ADay.Year));
finallyfinally

// destroy the object
ADay.Free;
end;

Department of Electric Information Engineering

3.4 Creating Components Dynamically
 Delphi components aren't much different from other objects.

This program has a form with no components and a handler

procedure TForm1.FormMouseDown (Sender: TObject;

for its OnMouseDown event. Here is the method's code:

p (j ;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
Var
Btn: TButton;

beginbegin
Btn := TButton.Create (Self); Btn.Parent := Self;
Btn.Left := X;
Btn.Top := Y;p ;
Btn.Width := Btn.Width + 50;
Btn.Caption := Format ('Button at %d, %d', [X, Y]);

end;

Department of Electric Information Engineering

3.4 Creating Components Dynamically

 The effect of The effect of

this code is to

create buttons

at mouse-click

positions
The Output Of The The Output Of The

Createcomps Example,
Which Creates Button

Components At Run Time

Department of Electric Information Engineering

3.5 Encapsulation

 A l h t f d t d A class can have any amount of data and any
number of methods.

However, for a good object-oriented approach,
data should be hidden, or encapsulated,
inside the class using itinside the class using it.

Department of Electric Information Engineering

3.5 Encapsulation

 For class-based encapsulation, the Delphi
 Private, Protected, and Public

language has three access specifiers: private,
protected, and public.

 A fourth, published, controls run-time type

p , p

, p , yp
information (RTTI) and design-time information,
but it gives the same programmatic accessibilitybut it gives the same programmatic accessibility
as public. Here are the three classic access specifiers:

Department of Electric Information Engineering

3.5 Encapsulation

 The private directive denotes fields and methods

 Private, Protected, and Public

p
of a class that are not accessible outside the
unit that declares the class.

 The protected directive is used to indicate methods
and fields with limited visibility. Only the currentand fields with limited visibility. Only the current
class and its inherited classes can access
protected elements. More precisely, only the class,p p y y
subclasses, and any code in the same unit as the
class can access protected members.

Department of Electric Information Engineering

3.5 Encapsulation

The public directive denotes fields and
methods that are freely accessible from anymethods that are freely accessible from any
other portion of a program as well as in the
unit in which they are defined.y

Department of Electric Information Engineering

3.6 Constructors

 a constructor is a special method that you a constructor is a special method that you
can apply to a class to allocate memory
for an instance of that classfor an instance of that class.

 The instance is returned by the constructor
and can be assigned to a variable forand can be assigned to a variable for
storing the object and using it later.

Department of Electric Information Engineering

3.6 Constructors

 All the data of the new instance is set

to zero.

 If you want your instance data to start out If you want your instance data to start out

with specific values, then you need to write

a custom constructor to do that.

Department of Electric Information Engineering

3.6 Constructors

Destructors and the Free Method

 In the same way that a class can have a In the same way that a class can have a
custom constructor, it can have a custom
destructor—a method declared with thedestructor a method declared with the
destructor keyword and called Destroy.

Department of Electric Information Engineering

3.6 Constructors

 Destructors and the Free Method

 Just as a constructor call allocates memory

for the object, a destructor call frees the

memory. Destructors are needed only formemory. Destructors are needed only for

objects that acquire external resources

in their constructors or during their lifetime.

Department of Electric Information Engineering

3.7 Inheriting from Existing Types

 To inherit from an existing class in Delphi, you

l d t i di t th t l t th b i i fonly need to indicate that class at the beginning of

the declaration of the new class. For example, this

is done each time you create a new form:

type
TForm1 = class(TForm)TForm1 = class(TForm)

end;

Department of Electric Information Engineering

3.7 Inheriting from Existing Types

 This definition indicates that the TForm1 class This definition indicates that the TForm1 class
inherits all the methods, fields, properties,

and events of the TForm class.

 You can call any public method of the TForm class
for an object of the TForm1 type. TForm, in turn,

i h i f i h d f h linherits some of its methods from another class,
and so on, up to the TObject base class.

Department of Electric Information Engineering

3.7 Inheriting from Existing Types

 Inheritance and Type Compatibility

 Pascal is a strictly typed language. This
th t t f l imeans that cannot, for example, assign

an integer value are type-compatible only
if th f th d t t (t bif they are of the same data type, or(to be
more precise) if their data type refers to
i l t d fi itisingle type definition.

Department of Electric Information Engineering

3.8 Working with Exceptions

 Another key feature of Delphi is its support for
ti E ti k b texceptions. Exceptions make programs more robust

by providing a standard way for notifying and
handling errors and unexpected conditions.

 Exceptions make programs easier to write, read, and
debug because they allow you to separate the
error-handling code from your normal code, instead
of intertwining the two.

Department of Electric Information Engineering

g

3.8 Working with Exceptions

 Enforcing a logical split between code and error

handling and branching to the error handler

automatically makes the actual logic cleaner

and clearer.

 You end up writing code that is more compact

and less cluttered by maintenance choresand less cluttered by maintenance chores

unrelated to the actual programming objective.

Department of Electric Information Engineering

3.8 Working with Exceptions

 At run time, Delphi libraries raise exceptions
h thi (i th tiwhen something goes wrong (in the run-time

code, in a component, or in the
ti t)operating system).

 From the point in the code at which it is
raised the exception is passed to itsraised, the exception is passed to its
calling code, and so on.

Department of Electric Information Engineering

3.8 Working with Exceptions

 Ultimately, if no part of your code handles the

exception the VCL handles it by displayingexception, the VCL handles it, by displaying

a standard error message and then trying to

continue the program by handling the next

system message or user request.

Department of Electric Information Engineering

3.8 Working with Exceptions

 The whole mechanism is based on four
keywords:

 try Delimits the beginning of a protected

keywords:

 try Delimits the beginning of a protected
block of code.

 except Delimits the end of a protected
block of code and introduces theblock of code and introduces the
exception-handling statements.

Department of Electric Information Engineering

3.8 Working with Exceptions

 finally Specifies blocks of code that must

always be executed even when exceptionsalways be executed, even when exceptions

occur. This block is generally used to perform

cleanup operations that should always be

executed, such as closing files or databaseexecuted, such as closing files or database

tables, freeing objects, and releasing memory

and other resources acquired in the same

program block.

Department of Electric Information Engineering

p g

3.8 Working with Exceptions

 raise Generates an exception. Most exceptions

you'll encounter in your Delphi programming willyou ll encounter in your Delphi programming will

be generated by the system, but you can also

raise exceptions in your own code when it

discovers invalid or inconsistent data at run time.discovers invalid or inconsistent data at run time.

The raise keyword can also be used inside a

handler to re-raise an exception; that is, to propagate

it to the next handler.

Department of Electric Information Engineering

3.8 Working with Exceptions

 Exception Classes In the exception-handling

statements you caught the EDivByZerostatements, you caught the EDivByZero

exception, which is defined by Delphi‘s RTL.

Other such exceptions refer to run-time

problems (such as a wrong dynamic cast)problems (such as a wrong dynamic cast),

Windows resource problems (such as

out-of-memory errors), or component errors

(such as a wrong index).
Department of Electric Information Engineering

(such as a wrong index).

3.8 Working with Exceptions

 Programmers can also define their own

exceptions; you can create a new inheritedexceptions; you can create a new inherited

class of the default exception class or one

of its inherited classes:

type
EArrayFull = class (Exception);EArrayFull class (Exception);

Department of Electric Information Engineering

3.8 Working with Exceptions

 When you add a new element to an array that

is already full (probably because of an error inis already full (probably because of an error in

the logic of the program), you can raise the

corresponding exception by creating an object

of this class:

if MyArray.Full then

of this class:

if MyArray.Full then
raise EArrayFull.Create ('Array full');

Department of Electric Information Engineering

3.8 Working with Exceptions

 This Create constructor (inherited from the

Exception class) has a string parameter to

describe the exception to the user.

 You don't need to worry about destroying

p

y y g

the object you have created for the exception,

b i ill b d l d i ll bbecause it will be deleted automatically by

the exception-handler mechanism.

Department of Electric Information Engineering

3.8 Working with Exceptions

 The code presented in the previous The code presented in the previous
excerpts is part of a sample program
called Exception1called Exception1.

 Some of the routines have been
slightly modified, as in the followingslightly modified, as in the following
DivideTwicePlusOne function:

Department of Electric Information Engineering

3.8 Working with Exceptions
function DivideTwicePlusOne (A, B: Integer): Integer;
begin try
// error if B equals 0
Result := A div B;
// do something else... skip if exception is raised
Result := Result div B; Result := Result + 1;
exceptexcept
on EDivByZero do begin
Result := 0;
MessageDlg ('Divide by zero corrected.', mtError, [mbOK], 0);
end;
on E: Exception do begin
Result := 0;
MessageDlg (E Message mtError [mbOK] 0);MessageDlg (E.Message, mtError, [mbOK], 0);
end;
end; // end except
end;

Department of Electric Information Engineering

