Delphi Advanced Programming Technology

I
Chapter 2

THE DELPHI PROGRAMMING
LANGUAGE

Professor Zhaoyun Sun

2.1 Overview

Pascal ---- Delphi programming language

Keywords, Operators

Variables

Predefined data types
User-defined data types
Statements

Procedures and functions

Department of Electric Information Engineering ‘ ‘ P

2.2 Keywords

Keywords And Other Reserved Words In The Object Pascal Language

/ Keyword Role \
absolute directive (variables)
abstract directive (method)
and operator (boolean)
array type
as operator (RTTI)
asm statement
assembler backward compatibility (asm)
at statement (exceptions)
automated access specifier (class)
begin block marker
case statement
cdecl function calling convention /
class Type P

Department of Electric Information Engineering ‘ i P

Keywords

Keyword Role (cont.)

const declaration or directive (parameters)
constructor special method

contains operator (set)

default directive (property)

destructor special method

dispid dispinterface specifier
dispinterface type

div operator

do statement

downto statement (for)

dynamic directive (method)

else statement (if or case)

end block marker

except statement (exceptions)
export backward compatibility (class)
exports declaration

external directive (functions)

Department of Electric Information Engineering j ‘ P

Keywords

Keyword Role (cont.)

far backward compatibility (class)
file type

finalization unit structure

finally statement (exceptions)

for statement

forward function directive

function declaration

goto statement

if statement

Implementation unit structure

implements directive (property)

in operator (set) - project structure
index directive (dipinterface)
inherited statement

initialization

unit structure

inline

backward compatibility (see asm)

interface

type

Department of Electric Information Engineering ‘ j P

Keywords

Keywords And Other Reserved Words In The Object Pascal Language

N

<

Keyword Role (cont.)

label declaration

library program structure

message directive (method)

mod operator (math)

name directive (function)

near backward compatibility (class)
nil value

nodefault directive (property)

not operator (boolean)

object backward compatibility (class)

of statement (case)

on statement (exceptions)

or operator (boolean)

out directive (parameters)

overload function directive

override function directive

Department of Electric Information Engineering

Keywords

Keywords And Other Reserved Words In The Object Pascal Language

Keyword Role (cont.)

package program structure (package)
packed directive (record)

pascal function calling convention
private access specifier (class)
procedure declaration

program program structure
property declaration

protected access specifier (class)
public access specifier (class)
published access specifier (class)
raise statement (exceptions)
read property specifier

readonly dispatch interface specifier
record type

register function calling convention
reintroduce function directive

Department of Electric Information Engineering a ‘ P

Keywords

Keywords And Other Reserved Words In The Object Pascal Language

Keyword Role (cont.)

safecall function calling convention
set type

shl operator (math)

shr operator (math)

stdcall function calling convention
stored directive (property)

string type

then statement (if)

threadvar declaration

to statement (for)

try statement (exceptions)
type declaration

unit unit structure

until statement

uses unit structure

var declaration

y

Department of Electric Information Engineering a ‘ P

Keywords

Keywords are all the Object Pascal reserved
Identifiers, which have arole in the language.

Learn keywords when you use them.

Don’t use the keywords as names of your variables
or functions !

Department of Electric Information Engineering ‘ ‘ P

2.3 Operators and Precedence

Simple code example: if Z>=100 then X: =yl +y2*a—y3/b;
Pascal Language Operators, Grouped By Precedence

Unary Operators (Highest Precedence)

@ Address of the variable or function (returns a pointer)
not Boolean or bitwise not
/ Multiplicative and Bitwise Operators \

* Arithmetic multiplication or set intersection

/ Floating-point division

div Integer division

mod Modulus (the remainder of integer division)

as Allows a type-checked type conversion among

at runtime

and Boolean or bitwise and

shli Bitwise left shift
\ shr Bitwise right shift /

Department of Electric Information Engineering a ‘ P

Operators and Precedence

Pascal Language Operators, Grouped By Precedence

Additive Operators \

" Arithmetic addition, set union, string
concatenation, pointer offset addition
) Arithmetic subtraction, set difference, pointer
offset subtraction
or Boolean or bitwise or
\ Xxor Boolean or bitwise exclusive or /
/ Relational and Comparison Operators (Lowest Precedence) \
= Test whether equal
<> Test whether not equal
< Test whether less than
> Test whether greater than
<= Test whether less than or equal to, or a subset of a set
>= Test whether greater than or equal to, or a superset of a set
in Test whether the item is a member of the set

Test whether object is type-compatible (another RTTI operator) /

Department of Electric Information Engineering j ﬁ P

Operators and Precedence

Contrary to most other programming
languages, the and and or operators
have precedence compared to the
relational one.

a<bandc<d //error

(a<b)and (c <d)

Department of Electric Information Engineering d ‘ P

Operators and Precedence

Some operators have different meanings with different
data types.

+ operator

add two numbers
concatenate two strings, but not two characters
make the union of two sets

— operator

Test whether equal,
(: = Assignment)
add two numbers

Department of Electric Information Engineering ‘ ‘ P

Operators and Precedence

/ :
When dividing any two numbers (real or
iIntegers) with the / operator, the result Is
a real-number.
div:
When dividing two integers with div
operator, result Is an integer.

10/4 1s 2.5 10div4 1s?2

Department of Electric Information Engineering ‘ ‘ P

Operators and Precedence

Declare variables

Use var keyword

After the var keyword comes a list of
variable names, followed by a colon
and the name of the data type.

var
Value: Integer;
|IsCorrect: Boolean:;
A, B: Char;

Department of Electric Information Engineering ‘ ‘ P

2.4 Data Types, Variables, Constants

Variables

Pascal requires all variables to be declared
before they are used. Every time you declare
a variable, you must specify a data type.

The var keyword can be used

at the beginning of the code of a function or
procedure

to declare variables local to the routine
Inside a unit to declare global variables.

Department of Electric Information Engineering ‘ i P

Variables

Once you have defined a variable of a
given type, you can perform on it only
the operations supported by its data

type.

Value := 10;
IsCorrect := True;

Value := IsCorrect:; /] error

Department of Electric Information Engineering i ‘ P

Constants

Constants have initial values that do not
change during program execution . You can
declare a constant with an initial value, and
the data type is unnecessary.

declarations: const

Thousand = 1000;

Pi =3.14;

AuthorName = ‘John H. Johnson';

Digits: array[0..5] of Char = ('0', '1', '2', '3', '4", '5");

Department of Electric Information Engineering ‘ i P

Data Types

Predefined data types

Boolean (Bamg
Integ ers data types

» Ordinal
Real numbers > oy
Characters, Strings \ > String
Date, time

User-defined data type

Array, etc.

Department of Electric Information Engineering ‘ ‘ P

Ordinal Types

Ordinal types are based on the concept of
order or sequence.

Integers, Char, Boolean...

You can ask for the value following (next) or
preceding (previous)

You can compare two values to see which is
higher.

Department of Electric Information Engineering a ‘ P

Ordinal Types

System Routines For Ordinal Types

/ Routine Purpose \
Decrements the variable passed as parameter, by
Dec one or by the value of the optional second
parameter.
Inc Increments the variable passed as parameter, by one or by
the specified value.
Odd Returns True if the argument is an odd number.
Pred Returns. the value before the argument in the order
determined by the data type, the predecessor.
Succ Returns the value after the argument, the successor.
ord Returns a nqml_aer indicating the order of the
argument within the set of values of the data type.
Low Returns the lowest value in the range of the ordinal type
assed as its parameter.
K High Ezeturns the highest value in the range of the ordinal data
Ype.

J

Department of Electric Information Engineering d ﬂ P

Ordinal Types

// ' Use ordinal functions
X:Byte=5; //range from -127 to 128
y:=Pred(x); w:=ord(x); Inc(x); Low(x);

// use Low and High functions
var
A:array[15..37] of Integer;
I.Integer;
begin
for I:=Low(A) to High(A) do
All]:=r;
end;

Department of Electric Information Engineering ‘ ‘ P

Boolean Types

Boolean values : True or False
Ord(False) is O, Ord(true) is 1.
Boolean Is the preferred type.

Boolean type expressions are used in may
places.

e.g. If statement

[l X, Y . Integer;

If X=1 then Y=X*2;

If X then [/l error

Department of Electric Information Engineering ‘ ‘ P

Character Types

ANSIChar / Char :

ANSI character, 8-bit (length 256)
WideChar :

Unicode characters, 16-bit (length 65535)
Symbolic vs. numeric notation:

‘A #65 ‘B’ #66 ...
‘@’ #64 tabulator #9 newline #10 ...

String:

"This Is a string.”

Department of Electric Information Engineering ‘ ‘ P

Integer Types

Generic integer types for 32-bit implementations of Object Pascal

1\

T Type Range Format
Integer -2147483648..2147483647 |signhed 32-bit
\Cardinal 0.. 4,294,967,295 unsigned 32-bit

7

Fundamental integer types

\

/ Type Range Format
Shortint -128..127 signed 8-bit
Smallint -32768..32767 signed 16-bit
Longint -2147483648..2147483647 signed 32-bit
Int64 _2%% 2% 1 signed 64-bit
Byte 0..255 unsigned 8-bit
Word 0..65535 unsigned 16-bit

&ongword 0..4294967295 unsigned 32-bit

%

Department of Electric Information Engineering ‘ ‘ P

Real Types

[
floating-point numbers

] Type Range Significant digits |
Single 1.5x10 "..3.4x10™ 7-8
\Double 50x10°°°..1.7 x 10™" 15 - 16

i

/ Type Range Significh
t digits
Real48 [2.9x107.1.7x10™ 6
Comp 27°+1..27°-1 te]
Currency |- 38
922337203685477.5808..922337203685477.5807
\Extended 3.6x10 .11x10 °° 10)/
M

Department of Electric Information Engineering ‘ ‘ P

Date and Time

|
TDateTime stores years, months, days, hours, minutes,
seconds in one variable (double).
TDateTime functions:
System Routines For The Tdatetime Type

/ Now Returns the current date and time into a single TDateTime value. \
Date Returns only the current date.
Time Returns only the current time.

DateTimeToStr Converts a date and time value into a string, using default formatting; to have more

control on the conversion use the FormatDateTime function instead.

DateTimeToStrin
9 Copies the date and time values into a string buffer, with default formatting.

DateToStr Converts the date portion of a TDateTime value into a string.
K TimeToStr Converts the time portion of a TDateTime value into a string. j

Department of Electric Information Engineering a ‘ P

Date and Time

System Routines For The Tdatetime Type

Routine

FormatDateTime

Description \
Formats a date and time using the specified format; you can specify which
values you want to see and which format to use, providing a complex format
string.

StrToDateTime

Converts a string with date and time information to a TDateTime value, raising
an exception in case of an error in the format of the string.

StrToDate Converts a string with a date value into the TDateTime format.
StrToTime Converts a string with a time value into the TDateTime format.
Returns the number corresponding to the day of the week of the TDateTime
DayOfWeek value passed as parameter.
DecodeDate Retrieves the year, month, and day values from a date value.

DecodeTime

Retrieves out of a time value.

EncodeDate

Turns year, month, and day values into a TDateTime value.

EncodeTime

Turns hour, minute, second, and millisecond values into a TDateTime value. /

Department of Electric Information Engineering i ‘ P

Date and Time

Example
StartTime := Now;
ListBox1.ltems.Add (TimeToStr (StartTime));
ListBox1.ltems.Add (DateToStr (StartTime));
StopTime := Now;
ListBox1.ltems [2] := FormatDateTime (‘hh:nn:ss’,
StopTime - StartTime);

I0E11 FM

e (GH1E499
i Elapsed i [Press bullon lor elapsed Lirme

Department of Electric Information Engineering ‘ ‘ P

Typecasting and Type Conversions

Be careful using typecasting:
Z:=Integer(X); C:=Char(N);

Use system routines:
Z:=Round(X); C:=IntToStr(N);

////’ Routine Description ‘\\\\
Chr Converts an ordinal number into an ANSI character.
Ord Converts an ordinal-type value into the number indicating its order.
Round Converts a real—type value into an Integer—type value, rounding its value.
Trunc Converts a real—-type value into an Integer—type value, truncating its value.
Int Returns the Integer part of the floating—point value argument.
IntToStr Converts a number into a string.
IntToHex Converts a number into a string with its hexadecimal representation.
Converts a string into a number, raising an exception if the string does not
StrTolnt o
represent a valid integer.
Converts a string into a number, using a default value if the string is not
StrToIntDef| 7"~ 8 8 8

Department of Electric Information Engineering j ﬁ P

Typecasting and Type Conversions
_______System Routines For Type Conversion

Routine Description
Val Converts a string into a number
Str Converts a number into a string, using formatting parameters
StrPas Converts a null-terminated string into a Pascal-style string. This
conversion is automatically done for AnsiStrings in 32-bit Delphi
StrPCopy Copies a Pascal-style string into a null-terminated string.
Copies a portion of a Pascal-style string into a null-terminated
StrPLCopy string. FloatToDecimal
Converts the floating—point value to its string representation usin
FloatToStr) oL 2 e <
default formatting.
Converts the floating—point value to its string representation usin
FloatToStrF s aL 2 e s
the specified formatting.
Copies the floating—point value to a string buffer, using the
FloatToText [P'°° e & &
specified formatting. FloatToTextFmt

StrToFloat |[Converts the given Pascal string to a floating—point value.

TextToFloat |Converts the given null-terminated string to a floating-point value.

Department of Electric Information Engineering ‘ ‘ P

@)

2.5 User-defined Data Types L

Make your own data types, then
define your variables

Subrange type
Set type
Enumerated type
Array

Record

Pointer

File type

Department of Electric Information Engineering ‘ ‘ P

Subrange types

Subrange type defines a range of values
within the range of another type

type
Ten =1..10;
OverHundred = 100..1000;

l lmrmmArcaac~cA —_ Al 1771,
uppercase = A..Z;

Var
Mylindex:Ten;
MyBigNumber: OverHundred,;

Department of Electric Information Engineering i ‘ P

Enumerated types

Enumerated types

Type
Colors = (Red, Yellow, Green, Cyan, Blue);
Suit = (Club, Diamond, Heart, Spade);

Ordinality of enumeration starts from O

Ord(Red) returns 0; Ord(Yellow) returns 1;

Department of Electric Information Engineering ‘ ‘ P

Set types

Set types are a group of values.

Type
/[use enumeration to define a set type
PeopleTypes = (student, teacher, worker, farmer);
GroupType=set of PeopleTypes;

Var

Groupl,Group2,Group3 : GroupType;

/[use of set

Groupl, Group2, Group3: GroupType;
Groupl:=[student,teacher],

Group2:.= [worker, farmer];

Group3:= [student, teacher, worker, farmer];

Department of Electric Information Engineering

Array

Array types define lists of a fixed number
of elements of a specific type.

type
DayTemperatures = array [1..24] of Integer;
var
DayTempl: DayTemperatures;
procedure AssignTemp;
begin
DayTempl [1] := 54; DayTempl [2] .= 52;
DayTempl [24] := 66;
DayTempl [25] := 67; /[compile-time error
end

Department of Electric Information Engineering

Array

Element index may be an integer, string, enumerator
or boolean.

Element value may be any type.

Use Low and High to get the lower and upper
bounds.

Var
Arrayl : Array[5..20] of string;

Begin
ShowMessage(‘length = '+IntToStr(Length(Arrayl)));
ShowMessage(‘lowest index = '+IntToStr(Low(Arrayl)));
ShowMessage(‘highest index = '+IntToStr(High(Arrayl)));

Department of Electric Information Engineering ‘ ‘ P

Array

// Use indexing to set values of the array
fori :=5 to 20 do
Arrayl[i] := IntToStr(i * 5);
// Now use indexing to display 2 of the elements
ShowMessage(‘element 7 value = ‘+ Arrayl[7]);
SglowMessage(‘element 20 value = ‘+ Arrayl1[20]);
end;

Display:
length = 16
lowest index =5
highest index = 20

element 7 value = 35
element 20 value = 100

Department of Electric Information Engineering ‘ ‘ P

Array

An array can have multiple dimensions.

type

YearTemps = array [1..12, 1..31] of Integer;
Var

DayTemp2011 : YearTemps;

/[use array: DayTemps2011[9,18]:= 56;

Type

DayTemperatures = array [1..24] of Integer;
MonthTemps = array [1..31] of DayTemperatures;
YearTemps = array [Jan..Dec] of MonthTemps;
Var

HourTemp2011 : YearTemps;

Department of Electric Information Engineering ‘ ‘ P

Record @

Record types define fixed collections of items
of different types.

Department of Electric Information Engineering ‘ ’ P

Record

Department of Electric Information Engineering ‘ ’ P

File

File types represent physical disk files.

Rich system components support users to store, load

data from files, and to make serialization and work with
database.

/[have afile to read and write integer data

type

IntFile = file of Integer;
Var

myFile: IntFile;

Department of Electric Information Engineering ‘ ‘ P

Pointers

A pointer type defines a variable that holds the memory
address of another variable of a given data type

var
P: MInteger;
X: Integer;
begin
P:=@X;
// change the
value
X :=10;
"= 20,

var
P: 7nteger;
Begin
/[initialization
New (P);
/[use pointer
N o= 20;
/[assign nil to pointer
P:=nil;
I/ after use, clear it
Dispose (P);
end;

Department of Electric Information Engineering ‘ ‘ P

@)

Chapter 2 Review | 2

Delphi programming language
v' Keywords, Operators

v Variables

v Predefined data types:

v’ Boolean

v Integer, Real
v' Char, Strings
v TDateTime

v User-defined data types

Department of Electric Information Engineering ‘ ‘ P

Chapter 2 Review | 2

v User-defined data types

v'Subrange

v’ Set
vEnumeration
v Array

v'File
v'Record
v'Pointer

Department of Electric Information Engineering ' ‘ P

Chapter 2

v Keywords, Operators

v Variables

v Predefined data types
v User-defined data types

Statements
Procedures, functions
Code examples

Department of Electric Information Engineering i ‘ P

2.6 Statements

Simple and compound statements
/[Simple statement
X:=Y +Z; [lassignment

/[Simple statement
Randomize; // procedure call

Assignment statements

X=Y+/Z
M:= DoubleValue(X);

// Compound
begin
A =B;
C.=A*2
end;

Department of Electric Information Engineering i ‘ P

Conditional Statements

Test an expression, then execute one of
statements or none.

If statements
begin
If CheckBox1.Checked then
ShowMessage (‘C1 is checked')
end;

I CheckBox2.Checked then
ShowMessage ('C2 is checked')
else
ShowMessage ('C2 is NOT
checked);

Department of Electric Information Engineering ‘ ‘ P

Conditional Statements

Nested If statements :

procedure TForml1.Button4Click(Sender: TODbject);
begin
/[compound if statement
ol if CheckBox1.Checked then
If CheckBox2.Checked then
ShowMessage (‘CheckBox1 and 2 are checked')

. else

ShowMessage (‘Only CheckBox1 is checked')
else
ShowMessage (‘Checkbox1 is not checked.')
end;

\

Department of Electric Information Engineering ‘ ‘ P

Conditional Statements

Case Statements

The execution depends on an expression
used to select a value, a list of possible
values, or a range of values.

case Number of

1: Text :='One’
2. Text := "Two';
3: Text := 'Three";
end;

Department of Electric Information Engineering

Conditional Statements

Case Statements

case MyChar of

'+': Text := 'Plus sign’;

'-' - Text ;= 'Minus sign’;

=" Text .= '‘Multiplication or division’;
'0".."9": Text := 'Number",

'a'..'z". Text := 'Lowercase character’,
'‘A'L'Z" Text .= 'Uppercase character’,
else

Text := 'Unknown character’,;

end;

Department of Electric Information Engineering

Example: Number of days in month

var
year:1..3000; month:1..12; days:28..31;
begin
year:=strtoint(editl.Text); /[get year input

month:=strtoint(edit2.Text); // get month input
case month of
1,3,5,7,8,10,12: days:=31;
4,6,9,11: days:=30;
2. if ((year mod 4=0)and(year mod 100<>0))
or (year mod 400=0) then days:=29

else days:=28 114 W 2 15 1 2 4t H A R 2
end;
label3.Caption :="i%Z H K E N '+inttostr(days); /I show result

end;

Department of Electric Information Engineering ‘ ‘ P

Loops

For Loop

Execution Is based on a counter, which can

be either increased or decreased by 1 each time
the loop Is executed.

var
K, I: Integer;
begin
K:=0;

forl:=1to 10 do
/l for | := 10 downto 1 do
K=K+ I
End;

Department of Electric Information Engineering ‘ ‘ P

Example: Buying chickens o

1 rooster for $5,1 hen for $3, 3 chicks for $1.
What are possible combinations to buy 100
chickens using $1007?

X rooster, y hen, z chick

x 0..19 y 0.33 z=100-Xx-Yy
5x + 3y + z/3 =100

Department of Electric Information Engineering ‘ ‘ P

Example: Buying chickens

Department of Electric Information Engineering ‘ ’ P

Loops

While and Repeat

Department of Electric Information Engineering ‘ ’ P

Statements

With Statement is a shorthand to refer to a record
type variable or an object.

type

Date = record Year: Integer; Month: Byte; Day: Byte;
end;
var

BirthDay: Date;

sade b

I TR oS R NS
WILIT DIl llLJd.y 010

e begin
BirthDay.Year := 2011, J __ _
: Year = 2011,
BirthDay.Month = 5; L
: - Month := 5;
BirthDay.Day := 14; -
_ Day .= 14;
End:; :
end;

Department of Electric Information Engineering ‘ ‘ P

2.7 Procedures and Functions

A procedure or function is a routine made
of a series of statements with a unique
name.

It can be activated many times by calling
Its name with parameters.

A function has a result, a return value,
while a procedure doesn't.

Advantage: easy to manage, reuse and
change code.

Department of Electric Information Engineering ‘ i P

Procedures and Functions @

Define

Department of Electric Information Engineering ‘ ’ P

Procedures and Functions @

Call

Department of Electric Information Engineering ‘ ’ P

Procedures and Functions

|
Passing parameters by value (Default)

When you change parameter value inside
routine, original value are unchanged.

procedure DoubleTheValue (Value: Integer);
begin

Value := Value * 2;
end;

var
X: Integer;

begin
X :=10; DoubleTheValue (X); // still X=10

Department of Electric Information Engineering ‘ ‘ P

Procedures and Functions

|
Passing parameters by reference

When you change parameter value inside
routine, original value will be changed.

procedure DoubleTheValue (var Value: Integer);
begin

Value := Value * 2;
end;

var
X: Integer;

begin
X := 10; DoubleTheValue (X); // now X=20

Department of Electric Information Engineering d ‘ P

Procedures and Functions

Constant parameters

Original value won't be affected by the routine,
while performance is optimized.

function DoubleTheValue (const Value: Integer): Integer;
begin

Value := Value * 2; // compiler error

Result := Value;
end

X :=10; DoubleTheValue (X); /I still X=10

Department of Electric Information Engineering ‘ ‘ P

Procedures and Functions @

Out parameters

Department of Electric Information Engineering ‘ ’ P

Procedures and Functions

Open array parameters is a way to pass a
varyingnumber of parameters to a routine.

function Sum (const A: array of Integer): Integer;

var
|: Integer;
begin
Result ;= 0;
farl ‘= 1 mail A tn Hinh(AN AN
1vVI1§ 1 .— I_UVV\I"\} (0 | Ilull\l"\} Uuv
Result := Result + A[l];
end;

/[calling function
X :=Sum ([10, Y, 27*1]);

Department of Electric Information Engineering

Procedural Types (advanced topic)

Declare type

a procedural type IntProc = procedure (var Num: Integer);

Create a compatible

orocedure procedure DoubleValue (var Value:Integer);

begin
Value := Value * 2;
end:

Specify the name of var |IP: IntProc; X: Integer;

actual procedure, begin
then use procedural IP = DoubleValue: X = 5
routine P (X):

end;

Department of Electric Information Engineering

Example: ordering a set of integers o

Assign random number to 20 integers.
(range 0..50).

Order them from big to small.

Department of Electric Information Engineering ‘ ‘ P

Example: ordering a set of integers

var A:Array[l..20] of Integer,
procedure AssignRandomNumber();
177 A BEH LA
Var Integer,
begin
Randomize;
for iI:=Low(A) to High(A) do
begin
All]:=random(50);
77— KT 5510 /N TS50 BE ML AR
end;
end;

Department of Electric Information Engineering ‘ ‘ P

Example: ordering a set of integers @

Department of Electric Information Engineering ‘ ’ P

Example: ordering a set of integers

e
I IFE: Nt 5 #EUE

procedure MakeBigerFirst

(var nl:integer, IidFE: HEFp
var n2:integer); procedure Ordering();
Var temp:integer: var i,j,temp:integer;
begin begin
(if (n1<n2) then for iz=Low(A) to High(A) do
begin for j:=i+1 to High(A) do
temp:=n2; /ﬁﬁﬁaﬁﬁ.: o
n2:=nl: MakeBigerFirst(A[i], A[j]);
nl:=temp; SHCE
end

End

Department of Electric Information Engineering ‘ ‘ P

Example: ordering a set of integers @

Department of Electric Information Engineering ‘ ’ P

Example: Matrix multiplication

/ Matrix B is 4z4 \

Matrix A is 3zd [= Matrix C s 3x4d
& 8 0 1], = = ° 53]
Y B s
3 -
_ _ _l .] _ _
4
because ¢11 = Zrm:f’_.-;._ =8.-04+3-14+0-3+1-1=53

)

Department of Electric Information Engineering ‘ ‘ P

Example: Matrix multiplication

Il — 4 S B A A =

Var a:array of array of integer;
b:array of array of integer;
c:array of array of integer,;

I MEKE
setlength(a,3,4);
setlength(b,4,4);
setlength(c,
high(a)+1,high(b[0])+1);
I B EFor looplit &

Il alij]=..... b[i,j]=...

Il R eIRiz

begin

for 1:=0 to high(a) do

end;

begin
for j:=0 to high(b[0]) do
begin
C[i,j] =0;
for k:=0 to high(b) d
clij]:=ali.k]*b[k,]]
end,;
end

+cv

Department of Electric Information Engineering ‘ ‘ P

cli,J];

Chapter 2 Review lI

DELPHI PROGRAMMING LANGUAGE
v'Statements:

v'If statement
v'Case statement
v'For statement

v'Procedures, functions:

v'Define and use
v'Passing parameters

Department of Electric Information Engineering ‘ ‘ P

Chapter 2 Summary

Pascal ---- Delphi programming
language

v'Keywords, Operators
v'Variables

v'Predefined data types
v'User-defined data types

v’ Statements

v'Procedures and functions

Department of Electric Information Engineering i ‘ P

Chapter 2 -

DELPHI PROGRAMMING
LANGUAGE

Q& A

Department of Electric Information Engineering ‘ ‘ P

